五、热力学
热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。 热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。
热力学三定律是热力学的基本理论。热力学第一定律反映了能量守恒和转换时应该遵从的关系,它引进了系统的态函数——内能。热力学第一定律也可以表述为:第一类永动机是不可能造成的。
热学中一个重要的基本现象是趋向平衡态,这是一个不可逆过程。例如使温度不同的两个物体接触,最后到达平衡态,两物体便有相同的温度。但其逆过程,即具有相同温度的两个物体,不会自行回到温度不同的状态。
这说明,不可逆过程的初态和终态间,存在着某种物理性质上的差异,终态比初态具有某种优势。1854年克劳修斯引进一个函数来描述这两个状态的差别,1865年他给此函数定名为熵。
1850年,克劳修斯在总结了这类现象后指出:不可能把热从低温物体传到高温物体而不引起其他变化,这就是热力学第二定律的克氏表述。几乎同时,开尔文以不同的方式表述了热力学第二定律的内容。
用熵的概念来表述热力学第二定律就是:在封闭系统中,热现象宏观过程总是向着熵增加的方向进行,当熵到达最大值时。系统到达平衡态。第二定律的数学表述是对过程方向性的简明表述。
1912年能斯脱提出一个关于低温现象的定律:用任何方法都不能使系统到达绝对零度。此定律称为热力学第三定律。
热力学的这些基本定律是以大量实验事实为根据建立起来的,在此基础上。又引进了三个基本状态函数:温度、内能、熵,共同构成了一个完整的热力学理论体系。此后。为了在各种不同条件下讨论系统状态的热力学特性,又引进了一些辅助的状态函数,如焓、亥姆霍兹函数(自由能)、吉布斯函数等。这会带来运算上的方便,并增加对热力学状态某些特性的了解。
从热力学的基本定律出发,应用这些状态函数,利用数学推演得到系统平衡态各种特性的相互联系,是热力学方法的基本内容。
热力学理论是普遍性的理论,对一切物质都适用,这是它的优点。但它不能对某种特殊物质的具体性质作出推论。例如讨论理想气体时,需要给出理想气体的状态方程;讨论电磁物质时,需要补充电磁物质的极化强度和场强的关系等。这样才能从热力学的一般关系中,得出某种特定物质的具体知识。 平衡态热力学的理论已很完善,并有广泛的应用。但在自然界中,处于非平衡态的热力学系统(物理的、化学的、生物的)和不可逆的热力学过程是大量存在的。因此,这方面的研究工作十分重要,并已取得一些重要的进展。
目前,研究非平衡态热力学的一种理论是在一定条件下。把非平衡态看成是数目众多的局域平衡态的组合,借助原有的平衡态的概念描述非平衡态的热力学系统。并且根据“流”和“力”的函数关系,将非平衡态热力学划分为近平衡区(线性区)和远离平衡区(非线性区)热力学。这种理论称为广义热力学,另一种研究非平衡态热力学的理论是理性热力学。它是以热力学第二定律为前提。从一些公理出发,在连续媒质力学中加进热力学概念而建立起来的理论。它对某些具体问题加以论证,在特殊的弹性物质的应用中取得了一定成果。
非平衡态热力学领域提供了对不可逆过程宏观描述的一般纲要。对非平衡态热力学或者说对不可逆过程热力学的研究。涉及广泛存在于自然界中的重要现象,是正在探讨的一个领域。如平衡态的热力学和统计力学的关系一样。从微观运动的角度研究非平衡态现象的理论是非平衡态统计力学。
第二定律
热力学第二定律主要内容1热传导的方向性
热传导的过程是有方向性的,这个过程可以向一个方向自发地进行。但是向相反的方向却不能自发地进行
2第二类永动机
只有单一的热源,它从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化人们把这种想象中的热机称为第二类永动机第二类永动机不可能制成,表示机械能和内能的转化过程具有方向性
3热力学第二定律
热力学第二定律有多种表述,下面给出常见的两种
一种表述是:不可能使热量由低温物体传递到高温物体,而不引起其他变化这是按照热传导的方向性来表述的
另一种表述是:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化这是按照机械能与内能转化过程的方向性来表述的,它也可以表述为:第二类永动机是不可能制成的
4能量耗散
能量耗散是从能量转化的角度反映出自然界中的宏观过程具有的方向性
研究对象
自然界物质运动形式具有多样性,除了存在如汽车、火车的运行,车床飞轮的飞转,天体运动等一类现象之外,还有物质的热胀冷缩、热传导、扩散,导体电阻率随温度变化及物质可进行固、液、汽三种状态的变化等另外一类现象。前者的特征是物体的空间位置发生变化,被称为机械运动现象,力学研究其规律;仔细分析后一类现象,会发现存在一共同的特点,即都与温度有关。我们将这一类的物质物理性质随温度变化的现象称为热现象。
热现象的产生是物质内部大量分子无规则运动导致的当讨论和研究热现象规律时,物体的整体宏观机械运动已不再属于讨论的范畴,人们将目光投向物质内部大量分子运动上。区别于机械运动物理概念,人们将由大量无规则运动的分子所组成的宏观物质以热现象为主要标志的运动形态称为热运动。
热现象是热运动的宏观表现,热运动是热现象的微观本质
热运动不是孤立,往往在一定条件下可向其它运动形态转化。如摩擦生热、挥发降温、气缸内气体吸热对外做功、电流通过电阻发热和温差电池等。因此研究热运动同其它运动形态转化的规律也是热学研究的另一个重要基本内容。
热学是研究物质热现象、热运动规律以及热运动同其它运动形式之间转化规律的一门学科。(未完待续。。)