磁带录音机的原理折叠
磁带录音机主要由机内话筒、磁带、录放磁头、放大电路、扬声器、传动机构等部分组成,是录音机的录、放原理示意图。录音时,声音使话筒中产生随声音而变化的感应电流——音频电流,音频电流经放大电路放大后,进入录音磁头的线圈中,在磁头的缝隙处产生随音频电流变化的磁场。磁带紧贴着磁头缝隙移动,磁带上的磁粉层被磁化,在磁带上就记录下声音的磁信号。
放音是录音的逆过程,放音时,磁带紧贴着放音磁头的缝隙通过,磁带上变化的磁场使放音磁头线圈中产生感应电流,感应电流的变化跟记录下的磁信号相同,所以线圈中产生的是音频电流,这个电流经放大电路放大后,送到扬声器,扬声器把音频电流还原成声音。
在录音机里,录、放两种功能是合用一个磁头完成的,录音时磁头与话筒相连;放音时磁头与扬声器相连。
汽车车速表折叠
汽车驾驶室内的车速表是指示汽车行驶速度的仪表。它是利用电磁感应原理,使表盘上指针的摆角与汽车的行驶速度成正比。车速表主要由驱动轴、磁铁、速度盘,弹簧游丝、指针轴、指针组成。其中永久磁铁与驱动轴相连。在表壳上装有刻度为公里/小时的表盘。
永久磁铁的磁感线方向如图1所示。其中一部分磁感线将通过速度盘,磁感线在速度盘上的分布是不均匀的,越接近磁极的地方磁感线数目越多。当驱动轴带动永久磁铁转动时。则通过速度盘上各部分的磁感线将依次变化,顺着磁铁转动的前方。磁感线的数目逐渐增加,而后方则逐渐减少。由法拉第电磁感应原理知道。通过导体的磁感线数目发生变化时,在导体内部会产生感应电流。又由楞次定律知道,感应电流也要产生磁场,其磁感线的方向是阻碍(非阻止)原来磁场的变化。用楞次定律判断出,顺着磁铁转动的前方,感应电流产生的磁感线与磁铁产生的磁感线方向相反,因此它们之间互相排斥;反之后方感应电流产生的磁感线方向与磁铁产生的磁感线方向相同,因此它们之间相互吸引。由于这种吸引作用,速度盘被磁铁带着转动。同时轴及指针也随之一起转动。
为了使指针能根据不同车速停留在不同位置上,在指针轴上装有弹簧游丝,游丝的另一端固定在铁壳的架上。当速度盘转过一定角度时,游丝被扭转产生相反的力矩,当它与永久磁铁带动速度盘的力矩相等时,则速度盘停留在那个位置而处于平衡状态。这时,指针轴上的指针便指示出相应的车速数值。
永久磁铁转动的速度和汽车行驶速度成正比。当汽车行驶速度增大时,在速度盘中感应的电流及相应的带动速度盘转动的力矩将按比例地增加,使指针转过更大的角度。因此车速不同指针指出的车速值也相应不同。当汽车停止行驶时,磁铁停转,弹簧游丝使指针轴复位,从而使指针指在“0”处。
熔炼金属折叠
交流的磁场在金属内感应的涡流能产生热效应。这种加热方法与用燃料加热相比有很多优点,除课本所述外还有:加热效率高,达到50~90%;加热速度快;用不同频率的交流可得到不同的加热深度。这是因为涡流在金属内不是均匀分布的,越靠近金属表面层电流越强。频率越高这种现象越显著,称为“趋肤效应”。工业上把感应加热依频率分为四种:工频(50赫);中频(05~8千赫);超音频(20~60千赫);高频(60~600千赫)。工频交流直接由配电变压器提供;中频交变电流由三相电动机带动中频发电机或用可控硅逆变器产生;超音频和高频交流由大功率电子管振荡器产生。
无心式感应熔炉的用途是熔炼铸铁、钢、合金钢和铜、铝等有色金属。所用交流的频率要随坩锅能容纳的金属质量多少来选择。以取得最好的效果。例如:5千克的用20千赫,100千克的用25千赫,5吨的用1千赫以至50千赫。
冶炼锅内装入被冶炼的金属,让高频交变电流通过线圈,被冶炼的金属中就产生很强的涡流,从而产生大量的热使金属熔化这种冶炼方法速度快,温度容易控制,能避免有害杂质混入被冶炼的金属中,适于冶炼特种合金和特种钢。
感应加热法也广泛用于钢件的热处理,如淬火、回火、表面渗碳等,例如齿轮、轴等只需要将表面淬火提高硬度、增加耐磨性,可以把它放入通有高频交流的空心线圈中,表面层在几秒钟内就可上升到淬火需要的高温,颜色通红,而其内部温度升高很少,然后用水或其他淬火剂迅速冷却就可以了,其他的热处理工艺,可根据需要的加热深度选用中频或工频等。
历史渊源折叠
法拉第定律最初是一条基于观察的实验定律。后来被正式化,其偏导数的限制版本,跟其他的电磁学定律一块被列麦克斯韦方程组的现代亥维赛版本。
法拉第电磁感应定律是基于法拉第于1831年所作的实验。这个效应被约瑟亨利于大约同时发现,但法拉第的发表时间较早。
见麦克斯韦讨论电动势的原著。
于1834年由波罗的海德国科学家海因里希楞次发现的楞次定律,提供了感应电动势的方向,及生成感应电动势的电流方向。
重要意义折叠
法拉第的实验表明,不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。这种现象称为电磁感应现象,所产生的电流称为感应电流。
法拉第根据大量实验事实总结出了如下定律:电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。
感应电动势用e表示,即e=nΔΦ/Δt这就是法拉第电磁感应定律。
电磁感应现象是电磁学中最重大的发现之一,它揭示了电、磁现象之间的相互联系。法拉第电磁感应定律的重要意义在于,一方面,依据电磁感应的原理,人们制造出了发电机,电能的大规模生产和远距离输送成为可能;另一方面,电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。人类社会从此迈进了电气化时代。
其他资料折叠
发现者折叠
1820年hc奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年dfj阿喇戈和avon洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明。
1831年8月,m法拉第在软铁环两侧分别绕两个线圈 ,其一为闭合回路,在导线下端附近平行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。法拉第立即意识到,这是一种非恒定的暂态效应。紧接着他做了几十个实验,把产生感应电流的情形概括为 5 类 :变化的电流 , 变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。
后来,给出了确定感应电流方向的楞次定律以及描述电磁感应定量规律的法拉第电磁感应定律。并按产生原因的不同,把感应电动势分为动生电动势和感生电动势两种,前者起源于洛伦兹力,后者起源于变化磁场产生的有旋电场。
变压器折叠
法拉第定律所预测的电动势,同时也是变压器的运作原理。当线圈中的电流转变时,转变中的电流生成一转变中的磁场。在磁场作用范围中的第二条电线,会感受到磁场的转变,于是自身的耦合磁通量也会转变(dΦb/dt)。因此,第二个线圈内会有电动势,这电动势被称为感应电动势或变压器电动势。如果线圈的两端是连接着一个电负载的话,电流就会流动。
电动机折叠
发电机可以“反过来”运作,成为电动机。例如,用法拉第碟片这例子,设一直流电流由电压驱动,通过导电轴臂。然后由洛伦兹力定律可知,行进中的电荷受到磁场b的力,而这股力会按佛来明左手定则订下的方向来转动碟片。在没有不可逆效应(如摩擦或焦耳热)的情况下,碟片的转动速率必需使得dΦb/dt等于驱动电流的电压。(未完待续。。)